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CHAPTER 5
Portfolio VaR for Market Risk

T he previous chapter took one step in the direction of addressing the
real-world complexities of many assets, namely, the nonlinearity of their

returns with respect to some underlying risk factor. This chapter deals with
another source of complexity, the dependence of returns jointly on several
risk factors. With these two enhancements, the simple VaR techniques we
studied in Chapter 3 become applicable to a far wider range of real-world
portfolios.

A simple example of a security with several risk factors, which we
mentioned in Chapter 3, is foreign exchange, which is typically held either
in the cash form of an interest-bearing foreign-currency bank deposit, or
the over-the-counter (OTC) derivatives form of a foreign exchange forward
contract. In either form, foreign exchange is generally exposed not only
to an exchange rate, but to several money-market rates as well. Another
example is a foreign equity. If you are, say, a dollar-based investor holding
the common stock of a foreign company, you are exposed to at least two
risk factors: the local currency price of the stock and the exchange rate.
As yet another example, if a long domestic equity position is hedged by
a short index futures position, in an effort to neutralize exposure to the
stock market, a small exposure to risk-free interest rates as well as the risk
of poor hedging performance are introduced. Similar issues arise for most
commodity and stock index positions, which are generally established via
futures and forwards.

As we set forth these simple examples, it becomes clear that exposure
to a single risk factor is the exception, not the rule. Many other derivatives
and credit products also have joint exposure to several risk factors and
nonlinearity with respect to important risk factors, so we need techniques
for measuring VaR for multiple risk factors. These characteristics are closely
related to the issue of how best to map exposures to risk factors.

In addition, most real-world portfolios contain several assets or po-
sitions. The techniques developed in Chapter 3 work for portfolios with
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several assets or positions if they are exposed to only one risk factor. One
can conjure up a example, say, a long or short position in the cash equity of
a single firm plus long or short positions in the stock via total return swaps
(to be discussed in Chapter 12). There is still only one market risk factor,
the equity price, but even this portfolio bears counterparty credit risk (to
be discussed in Chapter 6). And it is hard to imagine what sort of investor
would have this as their entire portfolio, rather than just one trade idea
among others.

We beg in this chapter by introducing a framework that accommodates
multiple risk factors, whether generated by a single security or in a portfolio.
In this framework, the risk of the portfolio is driven by the volatilities of
the individual risk factors and their correlation with one another. In the
second part of this chapter, we discuss one important example of a single
security exposed to several risk factors: Options are exposed, among other
risk factors, to both the underlying asset and its implied volatility. This
advances the discussion of option risk and nonlinearity begun in the previous
chapter.

5.1 THE COVARIANCE AND CORRELATION
MATRICES

We’ll start by developing some concepts and notation for a portfolio exposed
to several risk factors; we require not only the standard deviations of risk
factor log returns, but also their correlations. Suppose our portfolio contains
N risk factors S1t, . . . , SNt. We represent this list of risk factors as a vector

St = (S1t, . . . , SNt)

The vector of log returns is

rt = (r1t, . . . , rNt) =
[
log

(
S1,t+τ

S1,t

)
, . . . , log

(
SN,t+τ

SN,t

)]

The vector of volatilities is (σ1, σ2, . . . , σN); each σn is the volatility of
the return rnt of the nth risk factor. The correlation matrix of the returns is

⎛
⎜⎜⎝

1 ρ12 · · · ρ1N

ρ12 1 · · · ρ2N
...

...
. . .

...
ρ1N ρ2N · · · 1

⎞
⎟⎟⎠
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where ρmn is the correlation coefficient of log returns to risk factors m and
n. This matrix is symmetric, since ρnm = ρmn.

The covariance matrix is computed from the vector of volatilities and
the correlation matrix as the following quadratic form:

� = (σmn)m,n=1,...,N =

⎛
⎜⎜⎜⎜⎜⎜⎝

σ 2
1 σ1σ2ρ12 · · · σ1σNρ1N

σ1σ2ρ12 σ 2
2 · · · σ2σNρ2N

...
...

. . .
...

σ1σNρ1N σ2σNρ2N · · · σ 2
N

⎞
⎟⎟⎟⎟⎟⎟⎠

= diag(σ1, σ2, . . . , σN)

⎛
⎜⎜⎜⎜⎜⎜⎝

1 ρ12 · · · ρ1N

ρ12 1 · · · ρ2N

...
...

. . .
...

ρ1N ρ2N · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠

diag(σ1, σ2, . . . , σN).

The notation diag(x) means a square matrix with the vector x along the
diagonal and zeroes in all the off-diagonal positions, so diag(σ1, σ2, . . . , σN)
represents:

⎛
⎜⎜⎜⎝

σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σN

⎞
⎟⎟⎟⎠

It is often easier in programming to use matrices rather than summation, and
this notation lets us express the covariance matrix as a product of matrices.

In order to construct a covariance matrix, the correlation matrix must
be positive semi-definite. A matrix A is positive semi-definite if for any vector
x , we have x ′Ax ≥ 0. The covariance matrix is then positive semi-definite,
too. This means that for any portfolio of exposures, the variance of portfolio
returns can’t be negative.

To see how all this notation fits together, take the simple case of two
risk factors St = (S1t, S2t). The covariance matrix is

� =
(

σ1 0
0 σ2

)(
1 ρ12

ρ12 1

) (
σ1 0
0 σ2

)
=

(
σ 2

1 σ1σ2ρ12

σ1σ2ρ12 σ 2
2

)
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5.2 MAPPING AND TREATMENT OF BONDS
AND OPTIONS

Mapping is the process of assigning risk factors to positions. Chapter 3
alluded to these issues in the context of short positions, as did the last
chapter in the context of options and fixed-income securities. In order to
compute risk measures, we have to assign risk factors to securities. How we
carry out this mapping depends on many things and is in the first instance a
modeling decision.

In the last chapter, we gave an example of such a modeling choice:
Bond risk can be measured using a duration-convexity approximation, or by
treating a coupon bond as a portfolio of zero-coupon bonds. This modeling
choice corresponds to a choice of mappings. In carrying out the duration-
convexity approximation, we mapped the bond to a single risk factor, the
yield. Bond prices can also be seen as depending jointly on several risk
factors, namely, those determining the term structure of interest rates, by
treating the bond as a portfolio of zero-coupon bonds. We then have to
map it to multiple risk factors, a set of zero-coupon interest rates. The
modeling choice brings with it a mapping, which in turn brings with it the
need to adopt a portfolio approach to risk measurement. A related, but more
complex example is corporate bond returns, which are driven not only by
default-free interest rates or yields, but also depend on the additional risk
factors that determine the credit spread.

Single domestic common equities are among the few assets that can
readily be represented by a single risk factor, the time series of prices of the
stock. But for portfolios of equities, one often uses factor models, rather
than the individual stock returns. This is again a modeling decision. The
value of the asset may be assumed to depend on some “fundamental” fac-
tors, in the sense of the arbitrage pricing model. Equities are often modeled
as a function of the market factor, firm size, and valuation, to name only the
classic Fama-French factors. The fundamental factors will capture common
aspects of risk, and thus more accurately model return correlation than
treating each equity’s return stream as a risk factor in its own right.

Questions about mapping often boil down to what data are available
from which we can draw inferences about risk. The data we have are, as a
rule, not nearly as variegated as the risks. Data on individual bond spreads,
for example, are hard to obtain. Some data, such as data on equity risk
factors, have to be manufactured in a way that is consistent with the factor
model being applied.

In Chapter 4, we expressed the value of a position with a nonlinear
pricing function as xf (St) (omitting then time argument for simplicity). We
now let x represent a vector of M securities or positions, each a function of
the N risk factors: x1 = f1(St), . . . , xM = fM(St).
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The portfolio can then be written

Vt =
M∑

m=1

xm fm(St)

where St is the time-t value of the vector of risk factors. Any one of the M
securities, however, may be exposed to only a small subset of the N risk
factors.

The P&L over the time interval τ is then approximately equal to the
change in Vt:

Vt+τ − Vt =
M∑

m=1

xm [ fm(St+τ ) − fm(St)]

The asset may be treated as linear: that is, an equity, an equity index,
a commodity, a currency, or a default risk-free zero-coupon bond. The
mapping in this case is straightforward. We treat each equity (or currency
pair, etc.) as representing a risk factor. Many assets, however, have a more
complicated nonlinear relationship with risk factors.

The gravity of the mapping choice in risk measurement is hard to
overstate. As we see in Chapter 11, it is closely related to some of the
difficult problems in risk measurement encountered during the subprime
crisis.

5.3 DELTA-NORMAL VAR

For a single position with returns driven by a single risk factor, as we saw
in Chapter 3, the VaR is easy to compute via a parametric formula. But
for portfolios with more than one risk factor, there is no exact closed-form
solution for calculating VaR.

The delta-normal approach is an approximate, parametric, closed-form
approach to computing VaR. One of its virtues is that it is simple to com-
pute. That means we don’t have to do simulations, with all the programming
and data manipulation burden that entails, or reprice securities, which can
involve expensive repeated numerical solutions, as described in Chapter 4.
Instead, we compute the value of an algebraic expression, just as in paramet-
ric VaR with a single risk factor. Another advantage is that we can exploit
certain properties of the closed-form solution to get information about the
risk contributions of particular securities or risk factors to the overall risk
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of the portfolio. We explore these properties and how to use the associated
“drill-downs” in Chapter 13.

In the delta-normal approach, there are two approximations, in addition
to the model’s joint normal distributional hypothesis. We:

1. Linearize exposures to risk factors. This obviates the need for repric-
ing. However, we cannot use a quadratic approximation, only a linear
one.

2. Treat arithmetic, not log returns, as normally distributed.

5.3.1 The Delta-Normal Approach for a Sing le
Posit ion Exposed to a Sing le Risk Factor

To see how this approach is carried out, let’s start with the simplest possible
example, a single security exposed to a single risk factor, so M = N = 1.
We’ll do this to illustrate the techniques: Such simple portfolios don’t really
benefit from the shortcuts involved in delta-normal. Among the few exam-
ples of such positions are foreign currency positions held in non–interest
bearing accounts or banknotes, common stocks, if mapped to the stock
price rather than using a factor model, and short-term government bond
positions.

L inearizat ion In Chapter 4, we defined the delta of a security as the first
derivative of its value f (St) with respect to a risk factor St:

δt ≡ ∂ f (St)
∂St

The delta equivalent of a position is its delta times the number of units or
shares in the position x, evaluated at the most recent realization of the risk
factor:

xStδt = xSt
∂ f (St)
∂St

The delta equivalent has approximately the same dollar P&L, but not nec-
essarily even approximately the same market value as the position itself.
It shows more or less the same sensitivity to risk factor fluctuations, but
does not have the same value as the position. For example, an option’s delta
equivalent may be a good hedge, even though it has a market value quite
different from that of the option itself.
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For risk factors that are identical to non-derivative assets, such as cur-
rencies and stocks, and for exposures that move linearly with some set of
risk factors, this is not an approximation, but exact. When the risk factor is
identical to the security, we have

δt = ∂ f (St)
∂St

= 1

and the delta equivalent has the same market value as the position.

Arithmet ic Return Approximat ion The VaR shock z∗σ
√

τ , where

α is the confidence level of the VaR, e.g. 0.99 or 0.95
z∗ is the ordinate of the standard normal distribution at

which �(z) = 1 − α

σ is the time-t annual volatility estimate
τ is the time horizon of the VaR, measured as a fraction of a year

is a basic building block of a parametric VaR estimate, as we saw in Chap-
ter 3. In parametric VaR for a long position in a single risk factor, we
model P&L as lognormally distributed, so the VaR shock is z∗σ

√
τ . In the

delta-normal approach, we treat the P&L as normally distributed, so the
arithmetic return corresponding to the VaR shock is z∗σ

√
τ rather than

ez∗σ
√

τ − 1, even though the underlying asset price model is one of loga-
rithmic returns. The same caveats apply here as in Chapter 3, where we
introduced this approximation of parametric VaR for a single risk factor
as Equation (3.3); if the return shock is not more than a few percentage
points, the difference will be small, but for combinations of a higher con-
fidence level, a longer horizon, and a higher volatility, the difference can
be large.

Putting together the linearization of the value function and the arith-
metic return approximation, the P&L shocks for a single risk factor are
measured by

Vt+τ − Vt ≈ rtxδt St

and the VaR is estimated as

VaRt(α, τ )(x) = −z∗σ
√

τxδt St
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Example 5.1 (VaR of a Foreign Currency) Suppose a U.S. dollar–based
investor holds a position in euros worth $1 million. We’ll compute its 1-
day, 99 percent VaR via the delta normal approach as of November 10,
2006, using the root mean square estimate of volatility. The portfolio value
can be represented as

Vt = 1,000,000 = xSt

where St represents the dollar price of the euro, equal on November
10, 2006, to 1.2863. The number of units of the euro is x = 1000000

St
, or

€ 777,424, and the delta is δt = 1. In this mapping, we ignore the interest-
rate market risk that arises from fluctuations in euro and U.S. dollar money
market rates if the position is held as a forward or as a euro-denominated
bank deposit.

Using the 91 business days (90 return observations) of data ending
November 10, 2006, the annualized root mean square of the daily log
changes in the euro exchange rate is 6.17 percent. The VaR is then just
over 0.9 percent:

VaRt

(
0.99,

1
252

)
(x) = −z∗σ

√
τxδt St

= 2.33 × 0.0617

√
1

252
× 777,424 × 1.2863

= 2.33 × 0.0617

√
1

252
× 1,000,000

= $9,044

5.3.2 The Delta-Normal Approach for a Sing le
Posit ion Exposed to Several R isk Factors

In the next example, we use the delta-normal approach to measure the risk
of a single position that is a function of several risk factors. The number of
securities or positions is still M = 1, so x is still a scalar rather than a vector,
but the number of risk factors is N > 1. So St now represents a vector and
we also represent delta equivalents by the vector

dt = x

⎛
⎝ S1tδ1t

. . .

SntδNt

⎞
⎠
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where x is the number of units of the security. The VaR is

VaRt(α, τ )(x) = −z∗
√

τ
√

d′
t�dt (5.1)

For a two-factor position (N = 2),

VaRt(α, τ )(x) = −z∗
√

τx
√

S2
1tδ

2
1tσ

2
1 + S2

2tδ
2
2tσ

2
2 + 2S1t S2tδ1tδ2tσ1σ2ρ12

Consider, for example, a position in a foreign stock. The risk will not
be the same for an overseas investor as for a local investor. For the overseas
investor, value is a function of two risk factors:

f (St) = S1t × S2t

where S1t is the local currency stock price and S2t the exchange rate, in
units of the overseas investor’s currency per foreign currency unit. The
position is equivalent to a portfolio consisting of a long position in the
stock, denominated in the local currency, plus a long position in foreign
exchange.

Example 5.2 (VaR of a Foreign Stock) Suppose a U.S. dollar–based investor
holds $1 million worth of the Istanbul Stock Exchange National 100 Index
(also known as the ISE 100, Bloomberg ticker XU100). We’ll consider the
1-day, 99 percent VaR of this portfolio as of November 10, 2006, using
EWMA volatility and correlation estimates. We denote the local currency
price of XU100 by S1, while S2 represents the exchange rate of the Turkish
lira against the dollar, in USD per TRL; the time-t U.S. dollar value of the
index is thus S1t S2t.

The portfolio value can be represented as

Vt = 1,000,000 = xf (St) = xS1t S2t

Since we have set the value of the portfolio at $1,000,000, the number of
units of XU100 x is

x = 1,000,000
S1t S2t

= 3.65658 × 107
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using market data for November 10, 2006:

n Description Snt δnt dnt = xSntδnt σn

1 long XU100 39627.18 6.9013 × 10−7 1,000,000 20.18
2 long TRL 6.9013 × 10−7 39627.18 1,000,000 12.36

The deltas, delta equivalents, and EWMA volatilities (annualized, in per-
cent) are also displayed. Note that both delta equivalents are equal to the
$1,000,000 value of the portfolio. The EWMA return correlation is 0.507.

In matrix notation, we have:

� =
(

σ1 0
0 σ2

) (
1 ρ12

ρ12 1

) (
σ1 0
0 σ2

)

=
(

0.2018 0
0 0.1236

) (
1 0.5066

0.5066 1

) (
0.2018 0

0 0.1236

)

=
(

0.04074 0.012633
0.01263 0.015269

)

and

dt = 1000000
(

1
1

)

The VaR is then about 4.2 percent:

VaRt

(
0.99,

1
252

)
(x) = −z∗

√
τ
√

d′
t�dt

= 2.33 × 106

√
1

252

√(
1
1

)′ (0.04074 0.01263
0.01263 0.01527

) (
1
1

)

= $41,779

5.3.3 The Delta-Normal Approach for a Portfo l io
of Securit ies

Now let’s apply the delta-normal approach to general portfolios of M > 1
securities, exposed to N > 1 risk factors. Recall that the value of a portfolio
can be represented
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Vt =
M∑

m=1

xm fm(St)

where fm(St) is the pricing function for the m-th security. The delta equiva-
lent of the portfolio is the sum of the delta equivalents of the positions. The
number of units of each of the M positions is now a vector

x =

⎛
⎜⎝

x1
...

xM

⎞
⎟⎠

In measuring portfolio risk, we are interested in the portfolio’s total exposure
to each risk factor. So first, we need to add up exposures of different securities
to each risk factor. The delta equivalent for each risk factor is

M∑
m=1

xmSnt
∂ fm(St)
∂Snt

=
M∑

m=1

xmSntδmnt n = 1, . . . , N

The vector of delta equivalents of the portfolio is thus

dt =
⎛
⎝

∑M
m xmS1tδm1t

. . .∑M
m xmSNtδmNt

⎞
⎠

We want to express this in matrix notation, again because it is less
cumbersome in print and because it gets us closer to the way the procedure
might be programmed. We now have a N × M matrix of deltas:

	t =

⎛
⎜⎜⎜⎝

δ11t δ21t · · · δM1t

δ12t δ22t · · · δM2t
...

...
. . .

...
δ1Nt δ2Nt · · · δMNt

⎞
⎟⎟⎟⎠

If security m is not exposed to all the risk factors in St, then some of its first
derivatives will be zero, that is, δnmt = 0, and make no contribution to the
delta equivalent of the portfolio to that risk factor.
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Using this convenient notation, we can now express the vector of delta
equivalents as

dt = diag(St)	tx

Since each of the risk factors is assumed to be lognormal, the portfolio
returns, too, are normal.

Once we have aggregated the exposures to the risk factors, we can
use the variance-covariance matrix of the risk factor returns to measure
portfolio risk. Letting � now denote an estimate of the covariance matrix,
the τ -period P&L variance in dollars is estimated as

τd′
t�dt

and the P&L volatility in dollars as

√
τ
√

d′
t�dt

At this point, the simplifying assumption of treating returns as arithmetic
rather than logarithmic comes into play: This simple matrix expression isn’t
possible if we measure P&L shocks exponentially. The VaR is

VaRt(α, τ )(x) = −z∗
√

τ
√

d′
t�dt

This is the same expression as in Equation (5.1), for the case of one secu-
rity with multiple risk factors. What has changed here is only the way we
compute the vector of delta equivalents.

In the case of two securities, each exposed to one risk factor, we have

dt =
(

x1S1tδ11t

x2S2tδ22t

)

Just as a matter of notation, we have security m mapped to risk factor n,
m, n = 1, 2. The VaR is then

VaRt(α, τ )(x) = −z∗
√

τ

√(
x1S1tδ11t

x2S2tδ22t

)′ (
σ 2

1 σ1σ2ρ12

σ1σ2ρ12 σ 2
2

) (
x1S1tδ11t

x2S2tδ22t

)

= −z∗
√

τ

√
(x1S1tδ11t)2σ 2

1 + (x2S2tδ22t)2σ 2
2 + 2x1x2S1t S2tδ11tδ22tσ1σ2ρ12
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If all the delta equivalents are positive, it can helpful to express VaR as
a percent of portfolio value. For example, if δ11t = δ22t = 1, we can divide
by x1S1t + x2S2t to express VaR as

VaRt(α, τ )(x) = −z∗
√

τ

√
ω2

1σ
2
1 + ω2

2σ
2
2 + 2ω2

1σ1ω2σ1σ2ρ12

= −z∗
√

τσp

where the ωm are the shares of xmSmt in Vt, m = 1, 2, with ω1 + ω2 = 1, and

σp =
√

ω2
1σ

2
1 + ω2

2σ
2
2 + 2ω1ω2σ1σ2ρ

is the volatility of portfolio returns as a percent of initial market value.

Example 5.3 (A Portfolio Example of the Delta-Normal Approach) We’ll
calculate VaR results for a portfolio of five securities. The securities and the
risk factors they are mapped to are listed in Table 5.1. We have already
encountered two of the securities and three of the risk factors in our earlier
examples of the delta-normal approach.

The portfolio is assumed to be U.S.–dollar-based, hence risk is measured
in dollar terms. Each position has a market value of $1,000,000. The risk
factors are identified by their Bloomberg tickers. The number of shares or
units of each security is

x = 1,000,000
f (St)

=

⎛
⎜⎜⎜⎜⎝

777,424
−117,410,029

−726
1,000,000

36,565,786

⎞
⎟⎟⎟⎟⎠

The matrix of deltas is

	t =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −7.8 0
0 0 0 0 6.90132 × 10−7

0 0 0 0 39627.2

⎤
⎥⎥⎥⎥⎥⎥⎦
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TABLE 5.1 Portfolio Description

Securities

m Description f (St) Detailed Description

1 long EUR S1t Long spot EUR vs. USD
2 short JPY S2t Short spot JPY vs. USD
3 short SPX S3t Short S&P 500 via futures; mapped

to SPX Index
4 long GT10 p(S4t) = 1.0000 Price of a long on-the-run U.S.

10-year Treasury note with a
duration of 7.8; duration
mapping applied

5 long ISE 100 S5t S6t Long Istanbul Stock Exchange 100
Index via futures, with no
currency hedge; mapped to
XU100 Index

Risk Factors

Ticker Last Price Description

S1t EUR Crncy 1.2863 Spot price of EUR 1 in USD
S2t JPY–USD

Crncy
0.008517 Spot price of JPY 1 in USD

S3t SPX Index 1376.91 Closing price of S&P 500 Index
S4t GT10 Govt 0.0458 Yield of on-the-run U.S. 10-year

note
S5t XU100 Index 39627.2 Closing price of Istanbul Stock

Exchange 100 Index
S6t TRL Crncy 6.90132 × 10−7 Spot price of 1 (old) TRL in USD

with the m-th column representing the exposure of security m to each risk
factor. The vector of delta equivalents is therefore:

dt = diag(St)	tx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1,000,000
−1,000,000
−1,000,000

−357,240
1,000,000
1,000,000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The delta equivalent exposure of the bond position to the yield risk factor
per dollar’s worth of bond is equal to minus one, times the yield as a decimal,
times the bond’s modified duration, or −0.0458 × 7.8.
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Next, we need the statistical properties of the risk factors. In the delta-
normal approach, these are the volatilities and correlations, which we calcu-
late using the EWMA/RiskMetrics approach with a decay factor of 0.94. But
the delta-normal approach can be used together with any other estimator of
these parameters. The vector of annualized volatility estimates is

Position σn

EUR 0.0570
JPY 0.0644
SPX 0.0780
GT10 0.1477
XU100 0.2018
TRL 0.1236

and the estimated correlation matrix is

EUR JPY SPX GT10 XU100
JPY 0.75
SPX −0.08 −0.05
GT10 −0.58 −0.68 −0.09
XU100 0.25 0.26 0.25 −0.22
TRL 0.13 −0.09 0.00 0.18 0.51

The estimated covariance matrix is then

� = diag

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.0570
0.0644
0.0780
0.1477
0.2018
0.1236

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1.00 0.75 −0.08 −0.58 0.25 0.13
0.75 1.00 −0.05 −0.68 0.26 −0.09

−0.08 −0.05 1.00 −0.09 0.25 0.00
−0.58 −0.68 −0.09 1.00 −0.22 0.18

0.25 0.26 0.25 −0.22 1.00 0.51
0.13 −0.09 0.00 0.18 0.51 1.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

diag

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.0570
0.0644
0.0780
0.1477
0.2018
0.1236

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.003246 0.002751 −0.000343 −0.004863 0.002887 0.000931
0.002751 0.004148 −0.000249 −0.006456 0.003415 −0.000741

−0.000343 −0.000249 0.006088 −0.001081 0.003876 0.000018
−0.004863 −0.006456 −0.001081 0.021823 −0.006609 0.003223

0.002887 0.003415 0.003876 −0.006609 0.040738 0.012635
0.000931 −0.000741 0.000018 0.003223 0.012635 0.015269

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Finally, substituing the values of dt and �, the VaR of the portfolio is
$43,285:

VaRt

(
0.99,

1
252

)
(x) = 2.33

√
1

252

√
d′

t�dt = 43,285
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In Chapter 13, we further analyze this portfolio to identify the main drivers
of risk.

5.4 PORTFOLIO VAR VIA MONTE CARLO
SIMULATION

We can also compute VaR via Monte Carlo or historical simulation. The
process is similar to that described in Chapter 3 for a single position. The
main difference is that, instead of simulating I values of a single random
variable, we require I values of a multivariate random variable, each a vector
with a length equal to the number of risk factors. The i-th simulation thread,
for example, would use a vector random variable (ε̃i1, . . . , ε̃i N), drawn from
a zero-mean normal distribution with variance-covariance matrix �. Rather
than one return shock in each simulation thread, we have a set of return
shocks

√
τ (ε̃i1, . . . , ε̃i N).1

In parametric VaR, we are bound to treat P&L as normally distributed
in order to compute the closed form expression for the annual P&L variance
d′

t�dt. In estimation via simulation, in contrast, we can return to the log-
normal model of the P&L distribution. In each thread i of the simulation,
we would then compute the vector of asset price shocks as

S̃ti = S0e r̃i = e
√

τ
(
S0,1eε̃i1, . . . , S0,Neε̃i N

)
i = 1, . . . , I

The simulated portfolio-level P&L shocks are computed from the simulated
asset price shocks by multiplying each by the vector of deltas to get δ′

tS̃t,i .
Table 5.2 displays the results for our sample portfolio. The VaR at the

99 percent confidence interval is the absolute value of the 10th or 11th worst
portfolio outcome. The exact results are dependent on the simulations used
and will vary due to simulation noise. The simulation noise can be damped
to some extent by averaging the scenarios neighboring the VaR scenario, for
example, by taking the average of the 10th or 11th worst outcome as the
VaR. In the example, the VaR is somewhat larger computed via Monte Carlo
than via parametric VaR, due to random fluctuations more than offsetting
the effect of using logarithmic rather than arithmetic shocks.

1Our notation here is a bit different from that of Chapter 3. In the earlier discussion of
one-factor VaR, the ε̃i represented simulations from N(0, 1), and were subsequently
multiplied by an estimate of σ to obtain an estimate of the return shock

√
τ σ̂ ε̃i . Here,

(ε̃i1, . . . , ε̃i N) does not need to multiplied by the volatility estimate, as it is generated
using �.
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TABLE 5.2 Example of Portfolio VaR via Monte Carlo Simulation

i EUR JPY SPX GT10 XU100 TRL Ṽ i − V0

1 −0.0054 −0.0033 −0.0063 0.0113 −0.0342 −0.0198 −53,040
2 −0.0062 −0.0052 0.0038 0.0050 −0.0325 −0.0143 −52,841
3 −0.0052 −0.0024 −0.0043 0.0049 −0.0263 −0.0258 −51,648
4 0.0013 0.0032 −0.0042 0.0035 −0.0326 −0.0189 −49,778
5 −0.0041 −0.0041 0.0068 0.0049 −0.0214 −0.0196 −49,075
6 −0.0030 −0.0030 0.0057 0.0110 −0.0255 −0.0141 −48,852
7 −0.0063 −0.0039 0.0041 0.0137 −0.0264 −0.0109 −48,454
8 −0.0035 −0.0018 0.0016 0.0032 −0.0303 −0.0142 −48,247
9 −0.0029 −0.0013 0.0009 0.0094 −0.0265 −0.0160 −47,777

10 −0.0060 −0.0039 0.0025 0.0048 −0.0175 −0.0231 −46,492
11 −0.0031 −0.0014 −0.0056 0.0181 −0.0323 −0.0112 −45,508
12 −0.0010 0.0013 0.0007 0.0012 −0.0318 −0.0102 −44,901

...
...

...
...

997 −0.0012 −0.0052 −0.0012 −0.0023 0.0313 0.0205 58,451
998 0.0028 0.0052 0.0026 −0.0079 0.0469 0.0155 61,518
999 0.0086 0.0020 −0.0018 −0.0099 0.0279 0.0219 62,363

1,000 0.0035 0.0017 0.0027 −0.0156 0.0438 0.0241 73,737

The table displays a subset of the simulation results. The second through seventh
columns display the returns of each risk factor in each scenario. The rightmost
column displays the simulation results for changes in portfolio value. Horizontal
lines mark the VaR scenarios.

5.5 OPTION VEGA RISK

In Chapter 4, we took a first look at the risks of options. But we took
into account only an option’s exposure to the price of its underlying as-
set. In reality, most options and option strategies have significant vega risk,
that is, exposure to changes in implied volatility. Implied volatility thus be-
comes an additional risk factor to changes in the underlying asset. Implied
volatility often has a strong correlation to asset returns, so a portfolio ap-
proach is necessary to correctly measure the risk even of a single option
position.

We’ll discuss vega in two steps. First, we take a look at the behavior
of implied volatility and how it differs from what standard models suggest.
This is an important subject, not only in the context of option pricing and
option risks, but also because of what it tells us about the behavior of
the underlying asset returns. We can use implied volatilities to compute
the risk-neutral probability distributions we introduced in Chapter 2, using
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procedures to be outlined in Chapter 10. Later in this section, in the second
part of our discussion of vega, we see how we can incorporate vega risk into
overall market risk measurement for options.

The differences between the empirical behavior of impled volatility and
that predicted by Black-Scholes encompass the behavior of implied volatility
over time, and the pattern of prices of options with different exercise prices
and maturities at a point in time. We will discuss each of these, and the
challenges they present to option risk measurement, in turn.

5.5.1 Vega Risk and the Black-Scholes Anomal ies

We start by defining implied volatility more carefully, a concept that did not
exist before the Black-Scholes model became the standard for option model-
ing, and options and option-like derivatives became widespread during the
financial innovation wave of the 1980s (as described in Chapter 1).

Vega risk arises because option prices do not behave precisely as pre-
dicted by the Black-Scholes model. The Black-Scholes model posits the same
assumption about asset price behavior as the standard asset return forecast-
ing model described in Chapter 2. In the Black-Scholes model, there is a
unique, constant, never-changing volatility for each asset. In empirical fact,
implied volatilities change widely and abruptly over time. Figure 5.1 shows

USD –JPY

EUR–USD

2000 2005 2010

5

10

15

20

25

30

35

F IGURE 5.1 Time Variation of Implied Volatility
At-the-money (approximately 50δ) one-month implied volatility of the dollar-yen
(solid line) and euro-dollar (dashed line) exchange rates, percent p.a., January 6,
1997, to April 1, 2011. Euro vols are for the Deutsche mark prior to January 1,
1999, and for the euro after January 1, 1999.
Source: Bloomberg Financial L.P.
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one of myriad examples, the at-the-money forward implied volatilities of
one-month foreign exchange options for the EUR-USD and USD-JPY ex-
change rates.

Let’s look at a precise definition of implied volatility. Denote the quoted
or market price of a European call option with maturity date T and exercise
price X at time t by c(t, T − t, X) and that of the congruent put by p(t, T −
t, X). We are using the notation c(·) and p(·) to indicate that we are focusing
on observable market prices, as functions of the design parameters strike
and maturity, rather than the theoretical Black-Scholes model values of
Chapter 4 and Appendix A.3, v(·) and w(·). The implied volatility is the
value obtained by solving

c(t, τ, X) = v(St, τ, X, σ, r, q) (5.2)

for σ . Thus to be precise, we should refer to the Black-Scholes implied
volatility, since it is defined by that particular model. Since we are now
acknowledging the time-variation in implied volatility, we will add a time
subscript to the symbol σt, which now stands for the value of σ that satisfies
the equation in (5.2) of market to theoretical price.

Implied volatility is clearly itself volatile. What is its impact on position
value? One answer is provided by the Black-Scholes option vega, the sensitiv-
ity of an option to changes in implied volatility. This sensitivity is analogous
to the other “Greeks,” those with respect to the underlying price and the
time to maturity discussed in Chapter 4. The vega of a European call is:

νc,t ≡ ∂

∂σt
v(St, τ, X, σt, r, q)

Since options are often quoted in implied volatility units, vega risk can be
thought of as the “own” price risk of an option position, as opposed to that
of the underlying asset. Like gamma, vega is the same for European puts and
calls with the same exercise price and tenor. The notion of a Black-Scholes
vega is strange in the same way as the notion of a time-varying Black-
Scholes implied volatility: We are using the model to define and measure a
phenomenon that is incompatible with the model.

Implied volatility can be computed numerically or algebrically for Eu-
ropean options. One needs to be careful with the units of vega. We generally
have to divide νc,t by 100 before using it in a calculation. This is because νc,t

is defined as the change in option value for a “unit” change in σt, meaning
a 1 percent or 1 vol change in the level of volatility. But volatility has to be
expressed as a decimal when using it in the Black-Scholes formulas.

For both puts and calls, and for any values of the other parameters,
νc,t ≥ 0; higher volatility always adds value to an option. Figure 5.2 shows
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F IGURE 5.2 Option Vega
Upper panel: Black-Scholes value of a European call option as a function of
underlying asset price for implied volatilities σ = 0.05, 0.20, 0.35.
Lower panel: Black-Scholes European call option vega as a function of underlying
asset price for implied volatilities σ = 0.05, 0.20, 0.35.
The time to maturity is one month, and the risk-free rate and dividend rate on the
underlying asset are both set to 1 percent.
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two ways of looking at the impact of volatility on option value. The upper
panel shows the standard hockey-stick plot of a call option’s value against
the underlying asset price for a low, an intermediate, and a high option
price. For all values of the underlying price St, the option value is higher for
a higher vol.

An option’s value can be decomposed into two parts, intrinsic value and
time value. The intrinsic value is the value the option would have if it were
exercised right now. An at-the-money or out-of-the-money option has zero
intrinsic value, while an in-the-money option has positive intrinsic value.
The rest of the option’s value is the time value derives from the possibility of
ending in-the-money or deeper in-the-money. The time value is driven mainly
by volatility and the remaining time to maturity; doubling the volatility, for
a given τ , doubles the time value.

The curvature of the plots in the upper panel of Figure 5.2 also changes
with volatility. At lower volatilities, the sensitivity of the vega—the “gamma
of vega”—changes fast for changes in St, that is, there is a lot of curvature in
the function. At higher volatilities, there is less curvature, and the sensitivity
of the vega to underlying price is smaller.

The lower panel of Figure 5.2 shows the same phenomena in a different
way. It plots the vega itself for different levels of implied volatility. When
the option is at-the-money, the vega is the same regardless of the level of
implied volatility. The peak vega occurs at the underlying price at which the
option’s forward call delta is 0.50, in other words, at the underlying price at
which the option is “50 delta forward.” The forward call delta is given by

δfwd
c,t ≡ erτ ∂

∂St
v(St, τ, X, σ, r, q) = erτ δc,t

which is always on (0, 1). The forward put delta is 1 − δfwd
c,t , so the peak

vega for a European put occurs at the same underlying price as for a call.
This price is close but not exactly equal to the current and forward prices.
It is also equal to the 50th percentile of the future underlying price un-
der the risk-neutral probability distribution, discussed in Chapter 10 and
Appendix A.3.

From a risk monitoring standpoint, the implication of these properties
is that at-the-money options, whether puts or calls, have the highest vega
risk, and that vega risk increases with both implied volatility and time to
maturity; vega risk is a function, not of σt alone, but of σt

√
τ . In a low-

volatility environment, such as that which prevailed in the early 2000s, the
vega of a portfolio was likely to drop off rapidly if the market moved away
from the strikes of the options. In a high-volatility environment such as that
prevailing in the subprime crisis, high vega risk is more persistent.
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Example 5.4 (Option Vega) Consider a one-month at-the-money forward
European call options, exercising into one share of a stock trading at $100.
The implied volatility is 20 percent, and the risk-free rate and dividend rate
on the underlying asset are both set to 1 percent.

The Black-Scholes model value of the option is $2.3011. The delta of
the option is 0.511, and its vega is 11.50. If the implied volatility were to
increase to 21 percent, the model value of the option would increase to
$2.4161 = $2.3011 + 0.1150.

5.5.2 The Opt ion Impl ied Volat i l i ty Surface

Apart from time variation, implied volatilities display other important de-
partures from the Black-Scholes model’s predictions. The implied volatility
“biases,” as these systematic disagreements between real-world behavior
and the model are sometimes called, can only be defined and discussed in
the context of the Black-Scholes model. Implied volatility is a Black-Scholes
concept; without a model, there are only option prices.

The key Black-Scholes biases are:

� Options with the same exercise price but different maturities generally
have different implied volatilities, giving rise to a term structure of im-
plied volatility. A rising term structure indicates that market participants
expect short-term implied volatility to rise or are willing to pay more to
protect against longer-term return volatility.

� Out-of-the-money call options often have implied volatilities that differ
from those of equally out-of-the-money puts, a pattern called the option
skew. As we see in Chapter 10, it indicates that the market perceives the
return distribution to be skewed or is willing to pay more for protection
against sharp asset price moves in one direction than in the other.

� Out-of-the money options generally have higher average implied volatil-
ities than at-the-money options, a pattern called the volatility smile. It
indicates that the market perceives returns to be leptokurtotic or is
assuming a defensive posture on large asset price moves.

The latter two phenomena are sometimes referred to collectively as the
volatility smile. Figure 5.3 shows a typical example, for the S&P 500. The
implied volatility of each put or call is plotted against the forward call delta
corresponding to the option’s exercise price. We can see that options with
high call deltas, that is, low exercise prices compared to the current index
level, have much higher implied volatilities than options with high strikes
and low call deltas.
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F IGURE 5.3 S&P 500 Implied Volatility Smile
June options, prices as of March 9, 2007. Exercise prices expressed as forward call
deltas, annual implied volatilities expressed as decimals.

The volatility term structure and volatility smile together form the im-
plied volatility surface. Figure 5.4 illustrates with the EUR-USD volatility
surface for March 19, 2007. Apart from the skew in implied volatilities to-
ward high-strike options that pay off if there is a sharp dollar depreciation,
the surface also displays an upward-sloping term structure.

We can describe these observed volatility phenomena as a volatility func-
tion σt(X, τ ) that varies both with exercise price and term to maturity, and
also varies over time. Such a function is a far more realistic description of
option prices than a constant, fixed volatility σ for each asset. The variation
of at-the-money implied volatility over time is called the volatility of volatil-
ity or “vol of vol” (though the term is also sometimes used to describe the
variability of historical volatility). Vol of vol is, for most portfolios contain-
ing options, the main driver of vega risk. However, the term structure and
option skew also change over time, and are important additional sources of
vega risk.

The exchange-traded and OTC markets have different conventions for
trading options. The volatility smile has encouraged the OTC option mar-
kets to adapt the way in which they quote prices. Most of the time, most
of the fluctuations in option prices are attributable to fluctuations in the
underlying price. Changes in implied volatility tend to be less frequent. To
make it easier to quote options, dealers in OTC option markets often quote
the Black-Scholes implied volatility of an option rather than the price in
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F IGURE 5.4 EUR-USD Volatility Surface
Strike expressed as decimal deviation from ATMF (at-the-money forward) strike.
Data as of March 19, 2007. Spot FX rate $1.33.

currency units. Traders use the Black-Scholes model even though they do
not believe it holds exactly, because the implied volatilities of an option with
a given maturity and strike will typically be steadier than the price in cur-
rency units. When a trade is agreed on based on implied volatility, it is easy
to ascertain the current levels of the other market inputs to the price, the
underlying price and financing rate that enter into the Black-Scholes value
of the option, and settle the trade. This enables them to revise their price
schedule only in response to less-frequent changes in σt(X, τ ), rather than to
more-frequent changes in the option price in currency units.

In exchange-traded markets, option prices are quoted in currency units,
since these markets are set up to keep frequently fluctuating prices posted and
are not well set up to have a detailed conversation between counterparties
each time a trade is made. The OTC option trader first fixes a particular
value of the implied volatility for the particular exercise price and tenor of
the option on the “price schedule” σt(X, τ ). That price schedule will vary, of
course, during the trading day or by date t. The trader then substitutes that
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implied volatility, together with the design parameters of the option and the
observable market prices into the Black-Scholes pricing function to get the
option price in currency units:

c(t, T − t, X) = v(St, τ, X, σt(X, τ ), r, q)

The trader’s pricing process reverses the logic of Equation (5.2), which
solves for an implied volatility from an option price. Information about the
volatility smile is also expressed in the pricing of option combinations and
spreads, such as the strangle and the risk reversal we encountered in Chap-
ter 4. Dealers usually quote strangle prices by stating the implied volatility—
the “strangle volatility”—at which they buy or sell both options. For exam-
ple, the dealer might quote his selling price as 14.6 vols, meaning that he sells
a 25-delta call and a 25-delta put at an implied volatility of 14.6 vols each.
Dealers generally record strangle prices as the spread of the strangle volatil-
ity over the at-the-money forward volatility. If market participants were
convinced that exchange rates move lognormally, the out-of-the-money op-
tions would have the same implied volatility as at-the-money options, and
strangle spreads would be centered at zero. Strangles, therefore, indicate the
degree of curvature of the volatility smile.

In a risk reversal, the dealer quotes the implied volatility differential at
which he is prepared to exchange a 25-delta call for a 25-delta put. For
example, if the dollar-yen exchange rate is strongly expected to fall (dollar
depreciation), an options dealer might quote dollar-yen risk reversals as
follows: “One-month 25-delta risk reversals are 0.8 at 1.2 yen calls over.”
This means he stands ready to pay a net premium of 0.8 vols to buy a 25-
delta yen call and sell a 25-delta yen put against the dollar, and charges a
net premium of 1.2 vols to sell a 25-delta yen call and buy a 25-delta yen
put. The pricing thus expresses both a “yen premium” and a bid-ask spread.

5.5.3 Measuring Vega Risk

If there were time-variation in volatility, but neither a smile nor a term struc-
ture of volatility, the vol surface would be a plane parallel to the maturity
and strike axes. Vega risk could then be handled precisely in the quadratic
approximation framework. For now, let’s assume a flat, but time-varying
vol surface. If we include implied volatility as a risk factor, the approximate
P&L of a call is:

	v(St, τ, X, σt, r, q) ≈ θc,t	τ + δc,t	S + 1
2

γt	S2 + νt	σ
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We now have two risk factors, the underlying asset and the implied
volatility. This introduces new issues and new parameters:

1. Returns on the implied volatility may behave very differently over time
from those on “conventional” risk factors. If so, then simply estimating
the volatility of logarithmic changes in implied volatility and treating it
as an ordinary risk factor may lead to even more inaccurate VaR esti-
mates than is the case for cash assets. As we see in Chapter 10, however,
there is some evidence that the assumption of normally-distributed log
returns may not be that much more inaccurate for implied volatility
than for many cash assets.

2. We now also need to estimate the correlation between returns on the
underlying asset and log changes in implied vol.

How significant is vega risk relative to the “delta-gamma” risk arising
from fluctuations in the underlying price? Figure 5.5 provides an illustration.
It incorporates a typical-size shock to the underlying price and to implied
volatility for a plain-vanilla naked call. In the illustration, implied volatility
causes a P&L event about one-quarter the size of that induced by the spot
price. For other exercise prices or other option portfolios, however, vega
risk can be more dominant, even with typical-size asset return and implied
volatility shocks. For example, straddles have de minimis exposure to the
underlying, but a great deal of exposure to vega.
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F IGURE 5.5 Impact of Vega Risk
The market value of a long position in a one-month at-the-money forward call on

an asset with initial underlying price of 101.0. The time to maturity is one month,
and the risk-free rate and dividend rate on the underlying asset are both set to 1
percent. The right panel is a blowup of the area in the box in the left panel. The left
panel shows the option’s current and intrinsic value as the current and terminal
underlying asset price change. The right panel shows how much the plot of current
option price against the underlying price shifts down with a decrease in implied
volatility.
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We’ll use the delta-normal method of computing the VaR, taking vega
risk into account. While other approaches to option risk measurement can be
and are used in practice, the delta-normal model illustrates the issues specific
to options. A single option position is treated as a portfolio containing the
two risk factors, the underlying asset price and implied volatility. In this
approach, we take account of the time-variation of implied volatility, but
not changes in the shape of the volatility surface.

In the delta-normal approach, we have to define the exposure amounts,
and measure two return volatilities and a return correlation. To avoid con-
fusion with the implied volatility, we’ll denote the underlying price volatility
σ price and the vol of vol σ vol. As in any delta-normal approach, we have to
make sure the delta equivalents are defined appropriately for the risk factors
and for the way we are defining and measuring their volatilities and corre-
lations. The delta equivalent has already been defined as xStδc,t, where x is
the number of options. Similarly, the vega exposure or “vega equivalent” is
xσtνc,t.

If we are dealing with just one option position, or a portfolio of options,
all on the same underlying asset and with the same option maturity, there
are two risk factors, the underlying asset return and the implied volatility.
The vector of delta equivalents is

dt = x
(

Stδc,t

σtνc,t

)

where x is the number of units of the underlying asset the option is written
on. The covariance matrix of logarithmic underlying asset and volatility
returns is

� =
(

σ price 0
0 σ vol

)(
1 ρ

ρ 1

) (
σ price 0

0 σ vol

)

where ρ is the correlation between logarithmic changes in the underlying
price and implied volatility.

The portfolio may contain long or short hedge positions in the underly-
ing asset. The number of risk factors may be greater than two if the options
have different exercise prices or tenors.

Example 5.5 Consider a one-month at-the-money forward European call
option on $1,000,000 worth of euros. The option prices are denominated
in U.S. dollars. We’ll compute the one-day VaR at a 99-percent confidence
level as of June 4, 2010. The spot and forward foreign exchange rates were
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F IGURE 5.6 Euro Foreign Exchange Implied Volatilities
Spot exchange rate (dashed line) and one-month at-the-money forward implied
volatility (solid line) of the euro-dollar exchange rate, January 3, 2006, to April 1,
2010.
Source: Bloomberg Financial L.P.

1.1967 and 1.1970, the implied volatility 16.595 percent, and the U.S. and
euro money market rates 35 and 43 basis points.

As seen in Figure 5.6, the exchange rate and implied volatility have both
been quite volatile during the subprime crisis and the correlation between
their returns has also been subject to wide swings. During the first half of
2010, the correlation between underlying price and implied volatility returns
is negative: Implied vol goes up as the euro depreciates against the dollar.
The vols and correlation are

� =
(

σ price 0
0 σ vol

) (
1 ρ

ρ 1

) (
σ price 0

0 σ vol

)

=
(

0.1619 0
0 0.8785

) (
1 −0.3866

−0.3866 1

)(
0.1619 0

0 0.8785

)

=
(

0.0262 −0.0550
−0.0550 0.7717

)

The number of units of the option is x = € 835,415 = $1,000,000 ×
1.1967−1. The vector of delta equivalents in U.S. dollars is

dt = x
(

Stδc,t

σtνc,t

)
= 835,415

(
0.6099
0.0229

)
=

(
509,553
19,106

)
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We can thus quantify the exposure to vol as just under 4 percent of the
total exposure to market prices via the option. The VaR is

VaRt(α, τ )(x) = −z∗
√

τ
√

d′
t�dt = 2.33√

252
74,570.4

or about $11,366. The VaR of a long cash position in $1,000,000 worth of
euros would be slightly higher at $12,088. That is, expressing the exposure
through a long option position is slightly less risky “in the small,” as there
is a negative correlation between volatility and the value of the euro: As
the euro declines, implied volatility tends to rise, damping the decline in the
option’s value. If the correlation between implied vol and the value of the
euro turns positive, as during the early phase of the subprime crisis, the risk
of a long euro position would be higher if expressed through options, since
a decline in the value of the euro would tend to be accompanied by a decline
in vol.

The delta-normal VaR estimate takes into account variability in the
level of implied volatility over time, but not the variation in implied volatility
along the volatility surface, and as the shape of the volatility surface changes.
VaR can be made more accurate by taking account of the term structure and
smile. Furthermore, the level of implied volatility is correlated with both the
volatility of underlying returns and with the option skew.

To better understand these additional sources of risk, let’s start with the
simplest case, in which the shape of the volatility surface does not change,
regardless of changes in the asset price and in the level of implied volatility.
The shape of the volatility surface, however, has an impact on risk even
if it doesn’t change. The scenario is illustrated in Figure 5.7. The initial
underlying price and implied volatility are indicated as a point on the initial
smile (solid curve). Suppose implied volatilities increase across the board, so
the volatility smile shifts up by 0.01 (one vol), to the dashed curve. If the asset
price does not change, the initial underlying price and new implied volatility
are represented by point a. If the cash price also experiences fluctuations,
the new state might be at point b or c.2

The asset price has changed, while the exercise price of the option hasn’t,
so the option delta has changed. The increase in implied volatility may
then be larger or smaller than the one-vol parallel shift in the smile, as

2The volatility smiles displayed in Figure 5.7 are interpolated by fitting a polynomial
to five observed implied volatilities for call deltas equal to (0.10, 0.25, 0.50, 0.75,

0.90) using the Mathematica function InterpolatingPolynomial.
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F IGURE 5.7 Vega and the Smile
The figure illustrates the sticky delta approach. The initial delta of the call option
is 0.5. The initial volatility smile is that for one-month USD-EUR options,
October 17, 2008. The shocked volatility smile represented by the dashed curve is
one vol higher for each delta. At point a, the spot rate is unchanged. Point b
corresponds to a lower spot rate and point c to a higher one. The thin solid curve
represents a shocked curve in which the negative put skew has increased in
addition to an increase in the level of volatility.

the market will price the option using an implied volatility appropriate to
the new delta. This is known as a sticky delta approach to modeling, since
implied volatilities remain “attached” to the delta of the option as underlying
prices change. It contrasts with the sticky strike approach, in which implied
volatilities do not adjust to the changed moneyness of the option, but rather
remain “attached” to the exercise price. The sticky delta approach is more
realistic, especially in periods of higher volatility.

In the example illustrated in Figure 5.7, if the asset price declines, the
call delta increases, and the new implied volatility is given by point b on the
shocked volatility smile, resulting in an additional increase in the implied
volatility along the smile. If the asset price increases, so that the call delta
decreases, the new implied volatility is given by point c, resulting in almost
no change in implied volatility along the smile. Thus, even if the shape of
the smile does not change, fluctuations in the underlying asset price can
induce significant changes in implied volatility—and thus P&L—along the
volatility smile.3

3We are ignoring the shortening of the option’s time to maturity and any changes in
money market rates in this analysis.
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F IGURE 5.8 Euro Implied Volatilities, Risk Reversals, and Strangle Prices
One-month at-the-money forward implied volatility (dotted line) and prices in vols
of 10-delta risk reversals (solid line) and strangle prices (dashed line) for the
euro-dollar exchange rate, January 3, 2006, to April 1, 2011.
Source: Bloomberg Financial L.P.

The preceding paragraphs examined the case of a parallel shift in the volatil-
ity surface. Generally, however, the shape of the volatility surface will change
when there are shocks to implied volatility, especially if those shocks are
large. The correlation between the option skew and the level of vol can
change rapidly, as seen for EUR-USD in Figure 5.8. During the subprime
crisis, for example, rising implied volatility was typically accompanied by a
more pronounced skew toward euro depreciation. This reflected an investor
bias in favor of the U.S. dollar and was part of the “flight to safety” markets
exhibited during the financial crisis. But at times, such as during the first
half of 2009, this correlation was positive.

Such changes in the shape of the volatility surface can have an important
impact on option P&L. Imagine a short position in an out-of-the-money
EUR-USD put option in a high-volatility environment. The option may have
been sold to express a view that the underlying price will rise, or at least not
fall. In an adverse case, a sharp move up in implied volatility and lower in the
underlying price might be accompanied by an increase in the negative skew.
This is illustrated by the thin solid curve in Figure 5.7. The new state might
be a point such as d, adding to the losses to the short put option position
caused by the underlying price decline and the increase in vol caused by the
change in delta.
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FURTHER READING

Factor models are discussed in Fama and French (1992, 1993) and Zangari
(2003).

See Malz (2000, 2001b) for a more detailed discussion of the material
on vega risk. Dumas, Fleming, and (1997), Gatheral (2006), Daglish, Hull,
and (2007) are good starting points on implied volatility behavior. Cont
and da Fonseca (2002) discusses factor model approaches to the behavior of
implied volatility surfaces over time. “Sticky” strikes and deltas are discussed
in Derman (1999). See also the Further Reading sections at the end of
Chapters 10 and 14.


